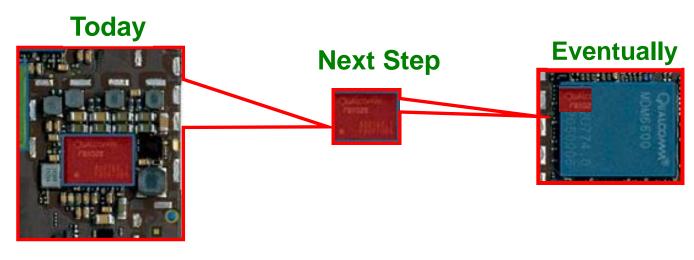
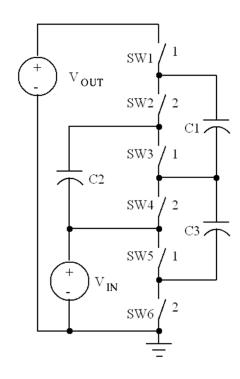
The Road to Integrated Power Conversion via the Switched Capacitor Approach

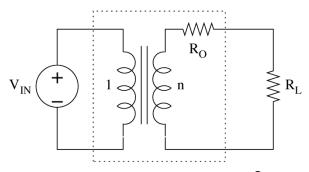
Prof. Seth Sanders
EECS Department, UC Berkeley

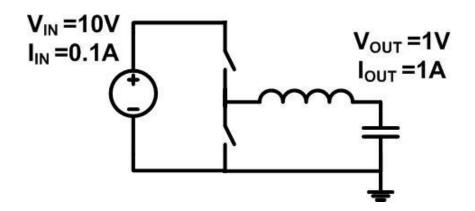

Integrated Power

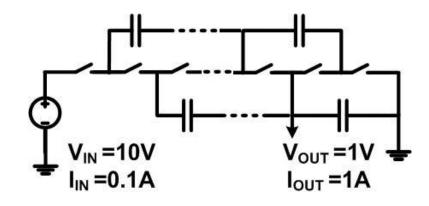
Integration has benefits:

- Reduce passives -> save board real estate, passive cost
- More voltage domains on-die, improve efficiency in multi-core processor
- Efficiency + fine-grain power management -> battery life

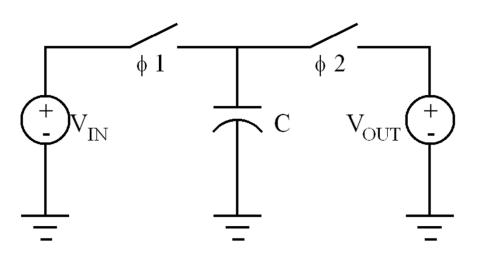

and challenges:

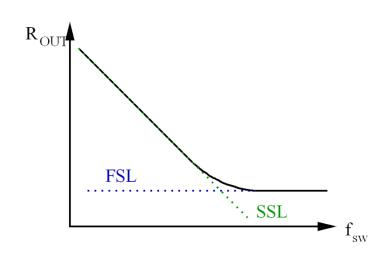

- Aim for $\sim 10W/mm^2$
- Wide input range: eg. Li-type battery voltage discharge range
- Limited on-die resources in standard CMOS
- Efficiency over wide load voltage and current range
- Ultra-low-power modes


Switched Capacitor Power Converters


- Only switches and capacitors
- Can support multiple input or output voltages/terminals
- Simple full integration in standard process
- Works well over a wide power range
 - Single mode, can adjust clock rate
 - No minimum load
- No inductive switching losses
- Stacked devices enable high voltage with low voltage processes
- Simple low freq model as an ideal transformer with Thevenin impedance
 - freq dependent loss and leakage

First Look


Magnetic boost/buck:


- •10-to-1 V conversion, 1A @ 1V
- •S1,S2 rated for V-A product of V*I = 10 V-A
- •Sum up to 20 V-A
- Need inductor, inductor loss, Inductive switching

10-to-1 Ladder Switched-Cap:

- •10-to-1 V conversion, 1A@1V
- •20 switches, each blocks 1V
- •18 switches handle 1/5 A
- •2 switches handle 9/5 A
- •V-A product sums up to 36/5 =7.2 V-A
- Intrinsic CMOS device convenient

SC Analysis: Simplest Example

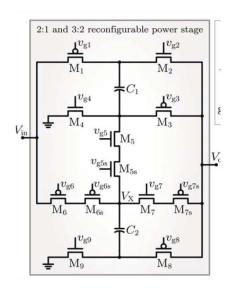
- Slow Switching Limit (SSL):
 - Impulsive currents (charge transfers)
 - Resistance negligible (assume R = 0)
 - This (SSL) impedance is the switching loss!
- Fast Switching Limit (FSL):
 - Constant current through switches
 - Model capacitors as voltage sources (C → ∞)

$$i = f_{sw} \Delta q = f_{sw} C \Delta v$$

$$i = \frac{1}{4} \frac{1}{R} \Delta v$$

$$(\Delta v = V_{IN} - V_{OUT})_{5}$$

Why Not S-C?


- Difficult regulation?
- Interconnect difficulty for many caps?
- Voltage rating of CMOS processes?
- Magnetic-based ckts = higher performance?
- Ripple?
- Fundamental charge sharing losses?

Discrete Inductors vs. Discrete Capacitors

Туре	Manufacturer	Capacitance	Dimension	Energy Density
Ceramic Cap	Taiyo-Yuden	22µF @4V	1.6 x 0.8 x 0.8	344
Ceramic Cap	Taiyo-Yuden	1μF@35V	1.6 x 0.8 x 0.8	1196
Tantalum Cap	Vishay	10μF@4V	$1.0 \times 0.5 \times 0.6$	533
Tantalum Cap	Vishay	100µF@6.3V	2.4 x 1.45 x 1.1	1037
Electrolytic Cap	Kemet	22μF@16V	7.3 x 4.3 x 1.9	94
Electrolytic Cap	C.D.E	210mF@50V	76φ x 219	172
Shielded SMT Inductor	Coilcraft	10μH @ 0.21A	2.6 x 2.1 x 1.8	0.045
Shielded SMT Inductor	Coilcraft	100μH @ 0.1A	3.4 x 3.0 x 2.0	0.049
Shielded inductor	Coilcraft	170µH @ 1.0A	11 x 11 x 9.5	0.148
Shielded inductor	Murata	1 mH @ 2.4A	29.8φ x 21.8	0.189

- Capacitors have >1000x higher energy density than inductors
- Same holds with on-die scale devices/technology

Recent Work, Example 1: TM Andersen et al., ISSCC 2014

2:1 and 3:2 topology

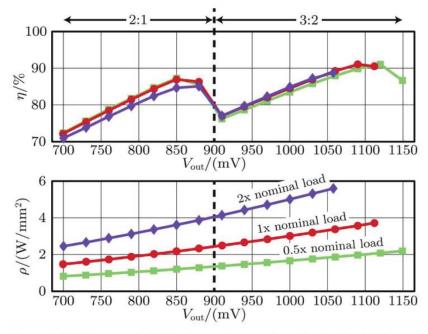
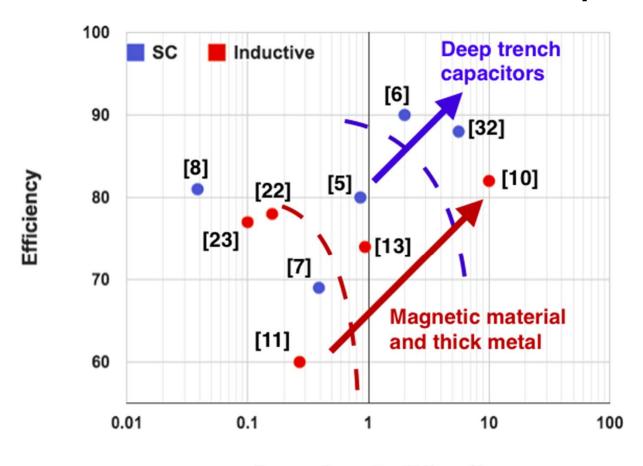



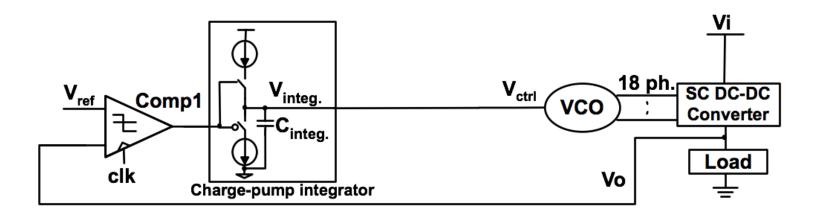
Figure 4.7.5: Measured efficiencies and power densities for $V_{\rm in}$ =1.8V over the full output voltage range.

- ~290 nF/sq.mm deep trench cap
- 16 phase, with 125 MHz per phase
- ~6 W/sq.mm @ 88-89% eff

Performance with advanced passives

Power Density [W/mm²]

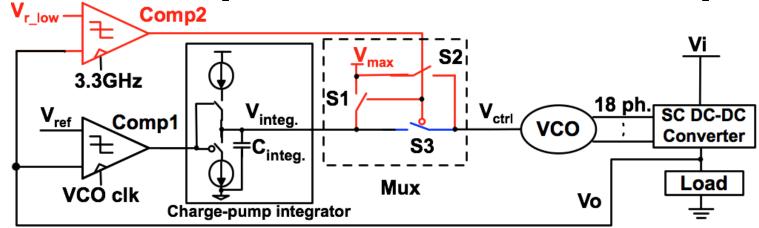
References in fig: [6] L. Chang, "A fully integrated switched capacitor ..." VLSI, 2010

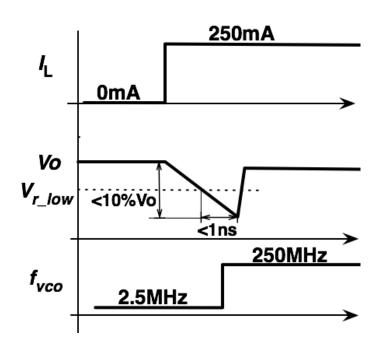

[5] HP Le, ISSCC 2010

[10] J. Dibene, "A 400A fully integrated silicon ..." APEC, 2010

[32] T.M. Anderson et al., ISSCC 2014

(Sanders et al., IEEE T-PELS 2013, "The Road to ...")

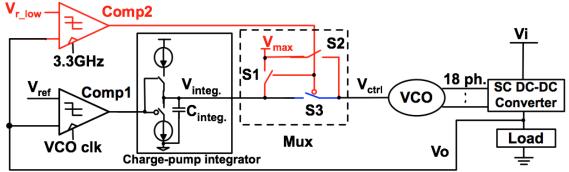

Simple Closed-Loop Control (Ex. 1 cont.)

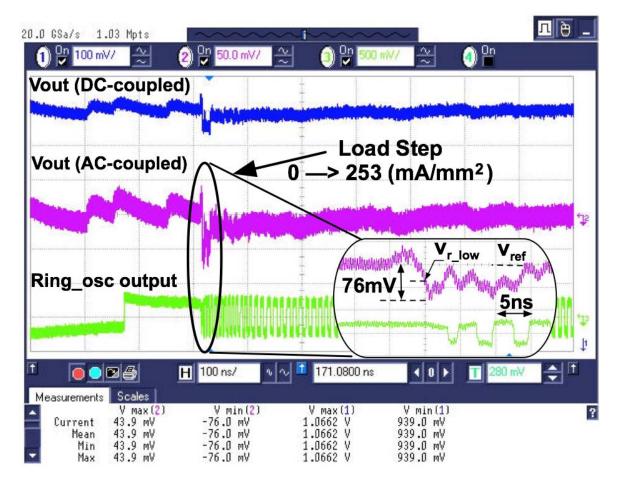


- Output impedance of the regulator set by f_{vco}
 - Rout $\alpha 1/(f_{vco}C_{flv})$
- Switching frequency set by (slow) integral control loop
- Key challenge: response to 0 → I_{max} load step

(Ref: H-P Le et al, ISSCC 2013)

Control Loop with Fast Load Response




- Additional comparator "jumps" f_{vco}
- Need sub-ns response time for <10% droop
 - Comparator must sample Vo at high frequency

(Ref: H-P Le et al, ISSCC 2013)

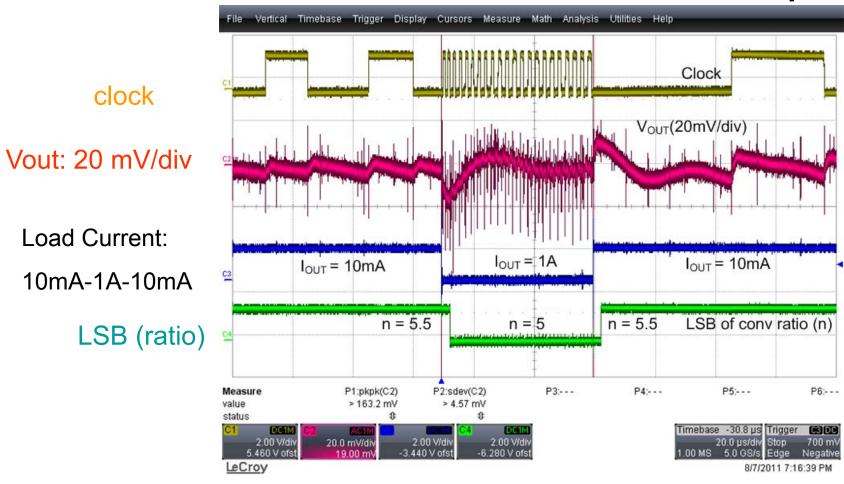
Load Step Measurement

 Load step generated by ondie load circuitry

- Achieves 7.6% droop under a full load step (50ps rise time) of 253mA/mm²
 - Indicates response time of < 1ns

(Ref: H-P Le et al, ISSCC 2013)

Example 2 – Point-of-Load:12V-to-1.5V Dickson Type Circuit

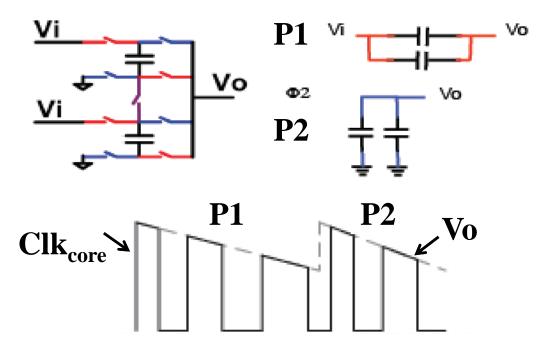

Illustrates "tap-changing" technique for line regulation.

- Dickson converter with nominal conversion ratios: 5-to-1, 5.5-to-1, ..., 8-to-1
- Modulate switch conductance for fine regulation
- Modulate switching frequency for high efficiency at light load
- Illustrates wide range conversion and voltage domain stacking

 (ϕ_1) S₁₃ S₁₇ 3V S₁₁ (ϕ_2) S₁₀. $S_{18} \mid (\varphi_1)$ C_6 0.75V 3V Regulate 3V conversion ratio (ϕ_1) C_4 3V (ϕ_2) C_3 S_6 3V (ϕ_1) Regulate switch conductance 1.5V V_{OUT} 1.5V (φ₂) (ϕ_1) (ϕ_1) 13

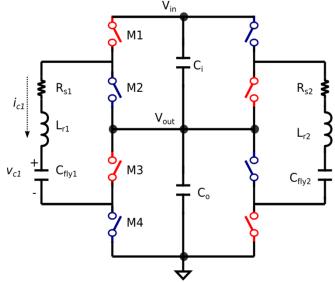
(Ref: V.W. NG et al, IEEE T-PELS 2013)

Transient measurement – load step



- V_{OUT} variation within 30mV during full loading and unloading transient
- C_{IN}=12μF, C_{OUT}=110μF, typical to 1A buck converters

Ex. 3: Raven Processor Project (2014)— BWRC (UC Berkeley), Alberto Puggelli poster


- Each digital unit is powered by a dedicated single-phase SC converter:
 - fine-grained DVFS
 - power gating
- Innovation: combine and exploit SC voltage ripple with DVS to adiabatically consume ripple energy

Basic unit cap cell and its functionality in 2:1

(Ref: IEEE T-VLSI 2014)

What's next? ResSC Topology(s)

Small on-die inductance resonates out working (flying) caps

- Avoid charge sharing losses
- Much larger swing on working caps, better use of valuable cap resources
- Net inductor V-A utilization superior to "conventional buck", etc.
- Opportunities for lossless regulation
- Refs: Stauth et al. (ISSCC 2013,14), many others + on-going efforts

Related:

- "Soft charging" methods that adiabatically combine inductor-based and SC ckts
- Ex. Pilawa et al, IEEE PESC 2008

Why Not S-C?

- Difficult regulation? X
- Interconnect difficulty for many caps? X
- Voltage rating of CMOS processes? X
- Magnetic-based ckts = higher performance? X
- Ripple? X
- Fundamental charge sharing losses? X